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Abstract 
The SmartCT system consists of AI based methods that assist users of robot-based CT systems (RoboCT) to digitalize industrial 
parts of almost arbitrary size and geometrical complexity with a high degree of automation. Due to the high number of degrees 
of freedom and thus complexity, RoboCT scan procedures are difficult to parametrize with respect to collision safety and image 
quality. The SmartCT assist functions help users to perform measurements quickly and safely while using advanced algorithms 
for geometrical image correction and 3D-CT volume reconstruction.  
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1    Motivation for RoboCT 
Industrial X-ray CT machines typically adopt two configurations: one with a turntable positioned between the X-ray source and 
the detector, and the other with a gantry that encompasses both components, rotating around the object. In both configurations, 
the maximum size of the inspected part is constrained by the distance between the X-ray source and the detector, as the part must 
be rotated to obtain projections from all viewing angles.  With robot-based CT systems, this limitation is overcome by using two 
cooperative robots carrying the X-ray components, being able to move them on arbitrary trajectories around parts of almost 
arbitrary size and geometric complexity (e.g. Figure 1). The high number of degrees of freedom on the other hand makes 
parametrization of scan procedures very complex. One major concern is avoiding collisions between the robots with the part. 
But an even more important aspect is using the available degrees of freedom to optimize scan acquisition and thus CT results, 
depending on the shape and material of the object in question. SmartCT provides a solution using AI based algorithms that assist 
users in performing CT scans from the parametrization of scan procedures to the final reconstructed CT volume. 
 

 
 

Figure 1: Examination of A-pillar on a complete car 
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2    Workflow 
The SmartCT systems leads users from the initial part positioning to the complete 3D-CT reconstruction. The workflow is 
outlined in the following diagram (Figure 2). During several steps the user simply has to physically place the part into the 
RoboCT system, optionally load the CAD data to the SmartCT system and define the region-of-interest (ROI) to be inspected 
and some information about the inspection task (pore detection / surface extraction, target voxel resoltuon).  

 
 

Figure 2: SmartCT workflow 

2.1    Part positioning and tracking 
Choosing the right scan strategy for large and complex shaped parts in terms of best imaging quality while using as little 
projections as possible is a trying endeavor and thus requires a multi-step workflow to be successfully realized. As first step and 
before any optimization strategy can calculate an appropriate scan trajectory, the system must know the shape and placement of 
the part to be inspected. Additionally, the measuring scene has to be analyzed for possible collision objects, like the part itself 
and mounting accessories, to deduce a collision-free path for the robots. To get this information in a quick and efficient way, it 
was chosen to introduce additional digitization modalities with a corresponding data processing pipeline to the system. 
Specifically, a time-of-flight-based scanner, specialized evaluation software and a digitization routine were integrated into the 
workflow, which are described in the next section. 

After the part is positioned and securely mounted into the RoboCT machine by an expert, the complete measuring scene is 
digitized with a 360-degree optical time-of-flight scanner multiple times which after on-scanner scan-to-scan registration yields 
a surface point cloud representation of the scene. The resulting point cloud must be registered to a known coordinate system, 
which can be either done by manually selecting reference planes and objects in the dataset or by an automatic reference marker-
based approach. Now that the scan data is in the correct frame of reference, it is cropped to a user defined active working area, 
resampled, and cleaned of statistical outliers. With that preprocessing as baseline, the collision mesh for use with the digital twin 
of the RoboCT system can be extracted by computing a convex hull around the dataset and adding an 10-20% offset along the 
mesh normals for extra clearance. If a more detailed collision mesh is required, alternatively a different meshing approach can 
be chosen, with the Alpha shapes surface reconstruction [1] as recommendation due to it delivering good enough results for 
collision detection while being robust to noise and tolerant regarding incomplete data. 

From this point on the system can be fully operated without the risk of collision, but the part transformation in the reference 
coordinate system is still unknown. To obtain this transformation, it is necessary to segment the scan data representing the part 
from the overall scan, which also includes the structures used for mounting or holding the part. Currently a semi-manual method 
is used, with relies on CAD data, or a master scan to mask the relevant data. The mask has to be aligned manually, which – 
depending on the dataset – can be tedious. Thus, in the future an AI-supported method relying on a Self-positioning Point-based 
Transformer [2] implementation is set up. The segmented data can be input into a registration pipeline for fitting to a reference 
object, again comprising of either CAD data or a pre-scanned master scan of the part. The registration is initially tried globally 
via Open3Ds Fast Point Feature Histograms (FPFH) implementation [3] [4]; if the residuals are to above a certain threshold the 
pipeline falls back to a manual N-point based registration method, where corresponding points are picked manually. To refine 
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the global registration, locally Iterative Closest Point (ICP) is used, which then yields the final part transformation used for 
optimizing scan trajectories. 

 

 

 

 

 

 
 
2.2    Reachability 
A highly flexible machine such as a CT device based on twin robots need a digital twin to avoid the danger of collisions between 
machine components and the scan object or other objects in the work volume. The digital twin of the RoboCT get the collision 
object, from the part positioning and tracking task, as input to avoid collisions of the robots with the scan object. The reachability 
calculation task get as input the scan center, the target resolution, and the focus-detector-distance. The scan center is determined 
from the ROI (region of interest) in object coordinates and the transformation of the object to the world coordinates from the 
part tracking task. The first step is to sample a set of all interesting scan poses that are possible for the task. In this case a random 
sphere of CT scan poses is calculated with the given target resolution, and focus-detector-distance around the scan center point. 
The second step is to check all the sampled poses by the digital twin if the robots can reach them without collision. That a scan 
pose is reachable both the detector and the source robot must be possible to reach their position without a collision to the scan 
object or a part of the robot system. The result of reachable scan poses is the reachability map output. The reachability map is 
used in the further steps that only valid robot positions are chosen. 

 
Figure 4: Reachability calculation steps: digital twin with inserted collision object (a); random pose sphere around scan center (b); reachable 
scan poses (c); reachable scan poses top view (d) 

2.3    Projection simulation 
In order to evaluate the information content and the suitability of X-ray projections for a high-quality CT scan, projections of the 
inspected part are simulated from a number of different viewing angles according to the reachability map. The number of 
projections and thus the sampling rate is chosen by the user. The generation of these virtual projections is done using the 
XSimulation tool [5]. The simulation works using raytracing methods from the point of origin of the emitted X-rays (focal spot 
of X-ray source) through the CAD model of the inspected part to each detector pixel. For the part modeling, the elemental 
composition and mass density has manually to be parametrized. The simulation uses realistic X-ray spectra, and each ray is 
attenuated by Lambert-Beer’s Law. XSimulation supports user defined focal spot sizes. In that case, the points of origin of the 
emitted X-rays are sampled according to the spatial intensity distribution of the focal spot. The simulation can be calibrated to 
the real imaging system regarding system spectrum and detector blurring. The latter effect is calculated as a post-processing step 
after the projection was simulated. Physical effects of higher order such as the impact of X-ray scattering on the image can also 
be simulated, but the calculation time significantly increases.  

Without scattering, the simulation time varies between some milliseconds up to one second per projection on a modern GPU 
depending mainly on the number of detector pixels and the focal spot subsampling rate. 

 

Figure 3: Pipeline steps visualized - from left to right: raw scan data of active region (a), collision object with additional offset (b), 
segmented part (c), registration result (d; CAD: red; target: green; global registration result: yellow; final registration result: blue) 

a b c d 
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Figure 5: Real projection (left) and simulation (right) of the same instudrial part 

2.4    Scan trajectory optimization 
Optimization of the computed tomography (CT) trajectory is an important prerequisite for exploiting the unique flexibility of the 
RoboCT system. For this reason, we have developed an end-to-end methodology to automate the selection of projections [6]. 
Our approach emphasizes identifying the most suitable projections for image reconstruction in CT imaging.  

 

Figure 6: Overview of the training of the  proposed approach. First, each projection is regressed to a single value. This value is used as a 
basis for the ranking. To generate a selection out of the ranking, we utilize a straight trough estimator. Binary Cross Entropy is utilized as 

loss function. 

Our method builds upon earlier research that employed a neural network framework to acquire a projection-dependent 
detectability index for CT trajectory optimization [7]. However, these prior methods exhibited certain limitations, particularly in 
terms of ensuring dataset diversity and frequently excluded projections potentially being highly valuable. In addressing these 
challenges, our work introduced a three-step neural network approach in [6]. The first step involves the transformation of each 
projection into a singular value via a modified ResNet-18 architecture, effectively constructing a vector that characterizes the 
merit of each projection. This neural network attempts to imitate the behavior of projection-dependent detectability index metrics, 
which assess the quality of individual projections and their contributions to signal observability in the reconstructed image [8]. 
The second step employs a differentiable ranking operator [9] on this vector, yielding a ranking of the projections. This 
differentiable ranking operator reformulates the typically non-differentiable process of ranking in descending order as a linear 
program over the permutahedron. This allows us to seamlessly integrate this operation into our neural network framework. 
Finally, a Straight-Through Estimator (STE) [10] is employed to transform this ranking into a binary vector indicating the 
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selection of projections. This binary vector enables the network to perform backpropagation through the chosen projections 
during the training process. A visual representation of these essential steps is presented in Figure 5. 

To effectively train our architecture for CT trajectory planning, we require a dataset of test specimens from the same object class 
as the target specimen. In [6], we utilized 15 Computer-Aided Design (CAD) files for training and validation. Additionally, we 
need information regarding reasonable Regions of Interest (ROIs) within the specimens. For each of these ROIs, we introduce 
an artificial defect randomly within the ROI. The labelling of our training and validation sets includes the calculation of the 
projection-dependent detectability index, a time-consuming task that assesses whether the inserted defect is detectable in the 
corresponding projection. To extend this projection-based metric to a set-based metric, we incorporate the distribution of the 
selected set as a figure of merit. This figure of merit can take the form of the Haversine Distance Constraint [7] or a Tuy-based 
data completeness metric [11]. The application of an integer program introduced in [7] provides us with the required labels. 
During the training and validation phases, we employ Binary Cross Entropy as our loss function. For our test dataset, we evaluate 
the efficacy of our approach in the domain of image reconstruction, utilizing the Structural Similarity Index (SSIM) and the Root 
Mean Squared Error (RMSE) as metrics to assess image quality. 

2.5    Geometric calibration 
Industrial robots' absolute positioning accuracy is in the most cases not precise enough for CT reconstruction. As a result, nominal 
robot positions are not sufficient for the reconstruction of RoboCT data. Precise geometrical information, such as projection 
geometries, is required to perform reconstruction an example is shown in Figure 5. For each scan position of the robots, the 
projection geometries must be corrected. To achieve this, we use the Direct Linear Transformation (DLT) [12]. The DLT 
calculates the projection geometries for each scan position using a known calibration body. A 3D printed plastic calibration body 
is used for this purpose. The surface of the body has steel balls arranged in helical form. The position of the steel balls, which is 
measured prior to using a metrological CT system, is an input to the DLT algorithm. When a new robot trajectory is generated, 
all scan positions are calibrated using the DLT algorithm and the designed calibration body. The high repeatability of the robots 
guarantees accurate repetitions of the robot trajectory with the object. 

 
Figure 7: Influence of geometric errors on reconstruction: The figure shows a single slice of a reconstructed Mustang Lego model, with the 
reconstructed slice shown as a pink rectangle in the upper left corner of the inserted image. The reconstruction slice is split so that the left-
hand side shows the corrected projection geometry, and the right-hand side shows the same slice with the uncorrected projection geometry. 

A decisive prerequisite for the application of the DLT algorithm is the exact assignment of steel spheres, which are represented 
as ellipses in X-ray projections, to their corresponding counterparts in the calibration body. In our project, we solved this mapping 
problem with the help of an AI model [13]. The decisive advantage of this AI approach is that it allows a freely selectable 
arrangement of the spherical elements in the calibration space. In contrast to conventional methods, this AI approach allows the 
user to configure the spatial arrangement themselves, as shown in Figure 4.  The configuration used ensures a uniform distribution 
of the spheres over the entire calibration body, regardless of the projection angle. This spatial arrangement contributes 
significantly to improving the calibration accuracy. 
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Figure 8: Calibration setup at RoboCT system at the Deggendorf Institute of Technology. 

2.6    Algebraic CT reconstruction 
In contrast to analytical reconstruction techniques, which are commonly used for standard circular trajectories, iterative algebraic 
reconstruction methods can reconstruct arbitrary scan trajectories and are therefore the main choice for flexible systems such as 
RoboCT. Our reconstruction algorithms are based on the simultaneous algebraic reconstruction technique (SART), a variant that 
in terms of implementation can be described as an algorithm with three basic steps (see Figure 9): for each trajectory point, 
compute a virtual projection of the current volume (forward-projection), compare the computed projection with the 
corresponding measured projection (correction) and correct the volume respectively (back-projection) [14]. These steps are 
commonly computed on the GPU due to considerable runtime gains, where the volume is stored in GPU-memory using float. 
Since the forward-projection step requires the entire volume, the GPU-memory quickly reaches its limits with modern 
applications and RoboCT in particular; a 2048x2048x2048 volume, for example, already corresponds to 32GB in the GPU-
memory. We modified the SART in this respect, and further extended it for the use on multi-GPU systems, resulting in two 
algorithms that can be used for reconstruction.  

  

Figure 9: Reconstruction algorithm visualized - from left to right: original SART, precise reconstruction method, approximate reconstruction 
method 

In a modification for precise reconstruction, we utilize the fact that the forward-projection, just like the back-projection, is a 
commutative operation. The volume is therefore split into disjoint sub-volumes, and for each trajectory point, the sub-volumes 
are copied group-wise into GPU-memory, performing multiple forward-projections and sequentially summing up their results. 
The back-projection is performed on the sub-volume groups in a similar manner (see Figure 9). Additional automatically selected 
adjustments allow the use of double buffering to minimize idle times, or the option to keep the volume in GPU-memory if it can 
fit entirely, which makes the reconstruction process identical to the original SART. Overall, this precise reconstruction method 
results in reconstructed volumes almost identical to those of the original SART but requires a large number of copy operations. 

To reduce the number of copy operations, we introduced a second, approximate reconstruction method in which we perform the 
forward- and back-projection directly on each sub-volume group. This leads to artifacts due to the forward-projection of an 
incomplete volume. There are mainly two reasons for this: the influence of the missing volume is ignored in the virtual projection 
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as well as in the computation of ray lengths used for the normalization of the correction values. This leads to higher correction 
values due to the discrepancy between computed and measured projection, which are then incorporated more strongly into the 
volume due to the reduced normalization of the values. Depending on the trajectory, the resulting artefacts mostly occur at the 
edges of the sub-volumes, where the missing volume has the most impact. We now add additional sub-volumes at the block 
transitions of the previous sub-volumes to cover the artefacts with the middle part of the additional sub-volumes (and vice versa). 
The original SART algorithm is applied group-wise to all sub-volumes and the resulting reconstruction assembled in a weighted 
manner (see Figure 9). Since this only addresses the already occurring artefacts, we added two modifications regarding their 
origin. The first modification allows the computation of the ray lengths considering the entire volume, correcting the 
normalization of the correction values. For the second modification, the influence of previously forward-projected sub-volume 
groups is weakened by subtracting their computed projections from the measured projections. These modified measured 
projections will then be used for the comparison of subsequent sub-volume groups, reducing the discrepancy between measured 
and computed projection.  

Regarding the runtime, despite reconstructing parts of the volume twice, the approximate method is generally faster than the 
precise method. The decision as to whether the approximate reconstruction method is sufficient, possibly with either or both 
modifications, is entirely component- and task-specific. Figure 10 shows the result of the three reconstruction methods on a 
simulated RoboCT data set.  

c  
Figure 10: Results of different reconstruction methods - from left to right: original SART (a), precise reconstruction method (b), 

approximate reconstruction methods with both modifications (c) 

3    Conclusion 
With SmartCT, an integral system is developed assisting RoboCT users from the part placement over choice of trajectory till the 
complete reconstructed volume with AI based methods. With SmartCT, the operation of such systems becomes faster, safer and 
the results better in terms of image quality. Testing labs as well as the production industry of large parts, e. g. integral car body 
manufacturers like Giga-casting plants benefits from that technology since SmartCT enables the usage of RoboCT systems 
outside scientific laboratories.   
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